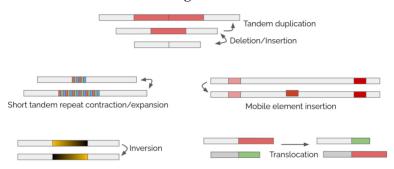


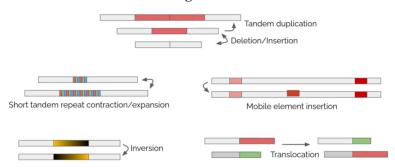
## Intérêt d'une référence du pangénome humain pour l'étude des variants structuraux

Jean Monlong


COLLOQUE ACLF 01/10/2025






#### Structural variants (SVs) come in diverse shapes and sizes

Variant size: from 50 bases to megabases.



#### Structural variants (SVs) come in diverse shapes and sizes

Variant size: from 50 bases to megabases.



- High functional impact
- Involved in rare and common diseases, and cancers.
- Hard to detect

## Pangenomics?

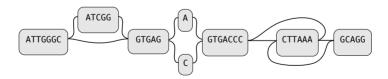
#### Pangenomics?

#### Not "Genome-wide" in French.



#### Pangenomics?

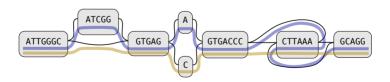
#### Not "Genome-wide" in French.




Also not exactly the set of **genes** from all strains within a clade, like in microbial pangenome.

#### Pangenomes represent genetic diversity succinctly

A pangenome represents a **collection of genomes** and the genetic variants among them.

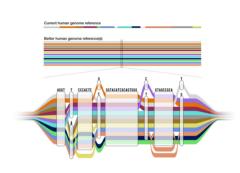

#### ATTGGGCATCGGGTGAGAGTGACCCTTTAAGGCAGG ATTGGGC----GTGAGCGTGACCCCTTAAAGCAGG



### Pangenomes represent genetic diversity succinctly

A pangenome represents a **collection of genomes** and the genetic variants among them.

# ATTGGGCATCGGGTGAGAGTGACCCTTTAAGGCAGG ATTGGGC----GTGAGCGTGACCCCTTAAAGCAGG






- Human Pangenome Reference Consortium (HPRC)
- Latest sequencing technologies for 350 diverse individuals



- Human Pangenome Reference Consortium (HPRC)
- Latest sequencing technologies for 350 diverse individuals
- Generate telomere-to-telomere phased assemblies
- Pangenome containing a comprehensive catalog of (structural) variants

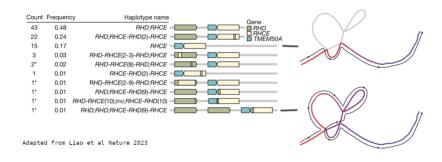


Hickey\*, Monlong\*, et al. Nat. Biotechnol. 2023





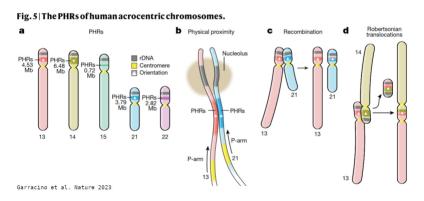
Liao\*, Asri\*, Ebler\*, et al. Nature 2023






Liao\*, Asri\*, Ebler\*, et al. Nature 2023

Check out the latest data at: https://data.humanpangenome.org (Ongoing) Release 2: 466 haplotypes of near-T2T quality.


#### Complex structural variants in the HPRC pangenome



Liao\*, Asri\*, Ebler\*, et al. Nature 2023

# Recombination between heterologous human acrocentric chromosomes

"we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologous sequences. "



#### The variation and evolution of complete human centromeres

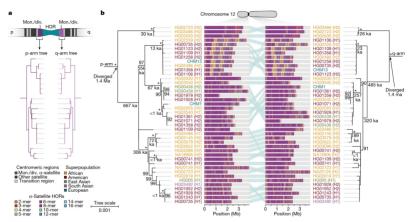
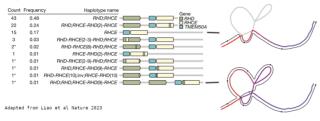
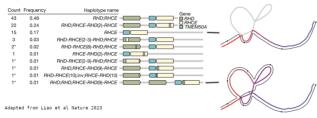
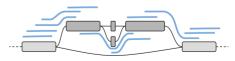




Fig. 7 | Phylogenetic reconstruction of human centromeric haplotypes and the saltatory amplification of new  $\alpha$ -satellite HORs.

Logsdon et al. Nature 2024

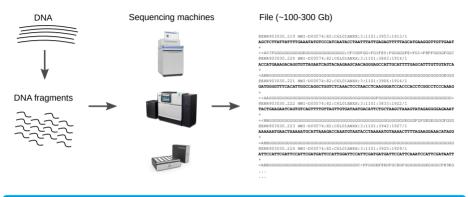

## Using the human pangenome resources

Explore high-quality assembled haplotypes across diverse individuals




#### Using the human pangenome resources

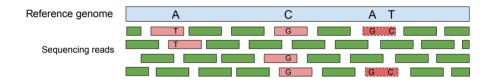
Explore high-quality assembled haplotypes across diverse individuals




- As a reference to study new samples with sequencing data.
  - 1. Genotype SVs with short-read data
  - 2. Characterize complex SVs with long-read data



# A pangenome reference to genotype SVs with short-read data


#### Genome sequencing



#### Sequencing reads

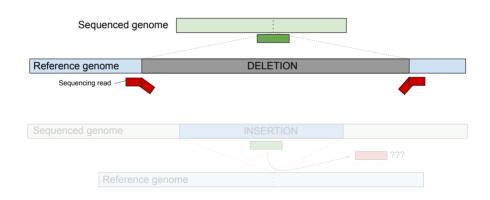

- ▶ Short: 150-250 bp (current tech)
- ► **Long:** 10,000s-100,000s bp (new tech. \$\$\$)

#### Aligning reads to a reference genome



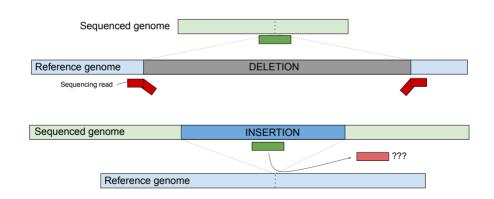
**Assuming the reads are correctly placed**, small variants are identified as recurrent differences between reads and the reference genome.

#### Aligning reads to a reference genome

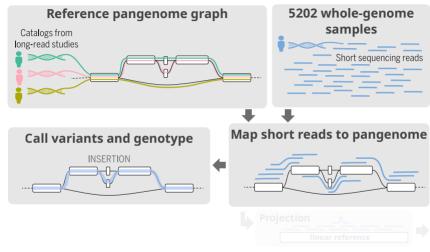



**Assuming the reads are correctly placed**, small variants are identified as recurrent differences between reads and the reference genome.

Variants can be missed, resulting in **reference bias**.

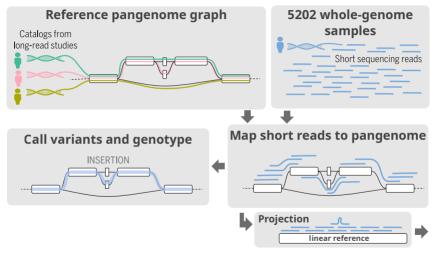

#### The challenges of structural variant detection

Around breakpoints, short sequencing reads are hard to map on the reference genome.




#### The challenges of structural variant detection

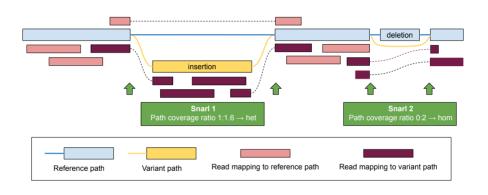
Around breakpoints, short sequencing reads are hard to map on the reference genome.




#### Short-read mapping and structural variant genotyping





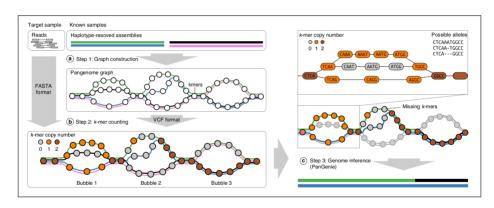

#### Short-read mapping and structural variant genotyping





Siren\*, Monlong\*, Chang\*, Novak\*, Eizenga\*, et al. Science 2021

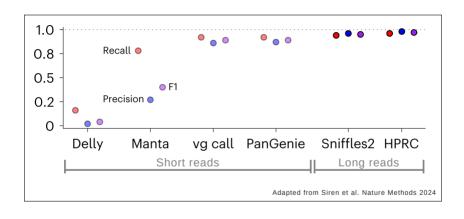
#### Genotyping structural variation from pangenomic mapping




https://github.com/vgteam/vg

Hickey\*, Heller\*, Monlong\*, et al. Genome Biology 2020

#### Genotyping structural variation from phased variants

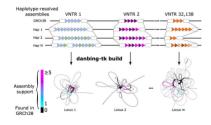

PanGenie uses k-mer and haplotype information to genotype SVs.



https://github.com/eblerjana/PanGenie

Ebler et al. Nature Genetics 2022

#### Structural variant genotyping performance

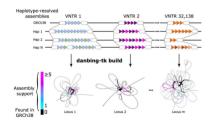



<sup>\*</sup>vg call and PanGenie using the "personalized pangenome" approach (Sirén et al. Nature Methods 2024).

#### Other specialized methods

#### Variable Number Tandem Repeats (VNTR) characterization

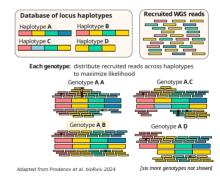
danbing-tk genotypes them or predict their length from short read data.




Lu et al. Nature communications 2021

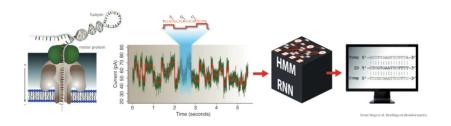
#### Other specialized methods

#### Variable Number Tandem Repeats (VNTR) characterization


danbing-tk genotypes them or predict their length from short read data.



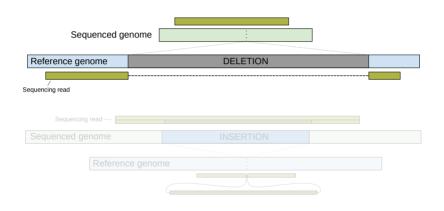
Lu et al. Nature communications 2021


# Targeted genotyping of complex polymorphic genes

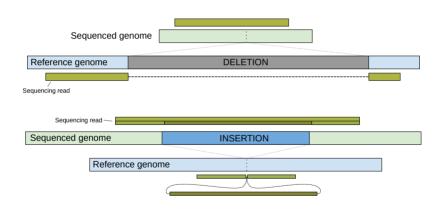
Locityper finds the best pair of known haplotypes from short reads.



# A pangenome reference to characterize complex SVs with long-read data


#### Long-read sequencing with Oxford Nanopore Technologies




As the DNA (or RNA) fragment passes through the pore, the current changes and is decoded to predict nucleotides.

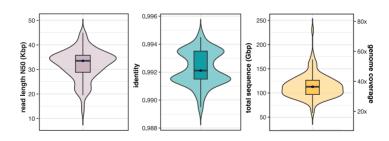
Reads length of 1,000s-100,000s of nucleotides.

#### Longer reads improve structural variant detection



#### Longer reads improve structural variant detection

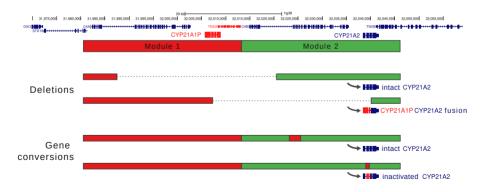



#### Application to a cohort of rare disease patients

Chan Zuckerberg Initiative





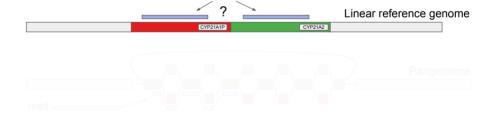

42 probands and 56 unaffected family members, sequenced with one-flowcell of ONT long-read sequencing (R10).



Negi et al. AJHG 2025

#### Challenging RCCX modules in the HLA region

- ▶ Tandem-duplication of  $\sim$ 30 Kbp genetic *module* (99% similar).
- CYP21A1P pseudogene and CYP21A2 gene.
- Variants cause congenital adrenal hyperplasia (recessive).



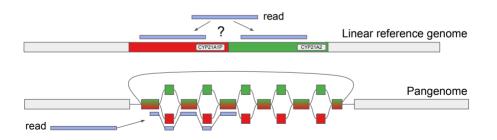

# Parakit: paralog toolkit using collapsed pangenomes

## Goal

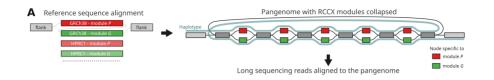
Address multi-mapping confusion by mapping to a **collapsed pangenome** and by analyzing the alignment profile.





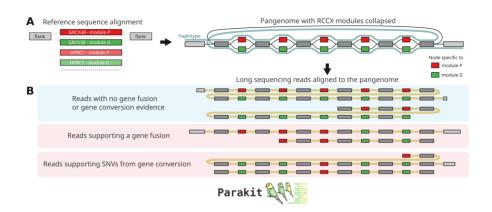

read

# Parakit: paralog toolkit using collapsed pangenomes

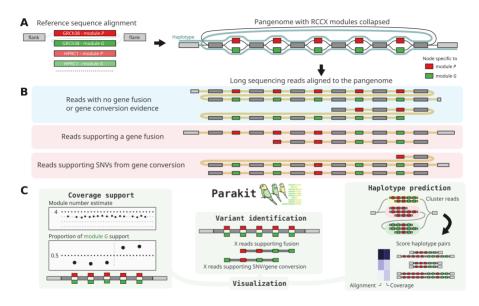

## Goal

Address multi-mapping confusion by mapping to a **collapsed pangenome** and by analyzing the alignment profile.



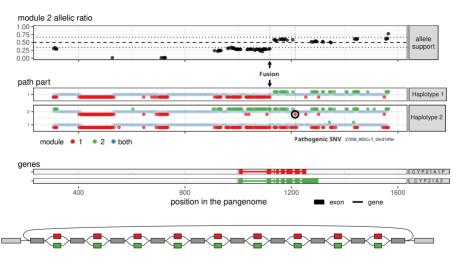



https://github.com/jmonlong/parakit Monlong et al. medRxiv 2025





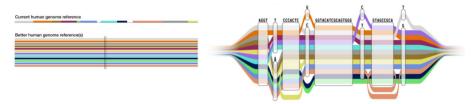

https://github.com/jmonlong/parakit Monlong et al. medRxiv 2025




https://github.com/jmonlong/parakit Monlong et al. medRxiv 2025



https://github.com/jmonlong/parakit Monlong et al. medRxiv 2025


# Example: patients with a gene fusion and pathogenic SNV



https://github.com/jmonlong/parakit Monlong et al. medRxiv 2025

# The human pangenome

→ Complex structural variants at unprecedented resolution



- → Augmented (pan)genomic reference to:
  - Genotype SVs from short-read sequencing data.
  - Characterize complex SVs with long-read sequencing.

# Acknowledgments

#### Univ. California, Santa Cruz

- Benedict Paten
- Glenn Hickey
- Jouni Sirén na
- Adam Novak
- Xian Chang 🖷
- Jordan Eizenga 🐐
- Shloka Negi
- Karen Miga
- Brandy McNulty
- Melissa Meredith
- Paolo Carnevali
- Trevor Pesout
- Kishwar Shafin
- Mira Mastoras
- Mobin Asri

#### INSERM IRSD

- Sarah Djebali
- Matis Alias-Bagarre

#### NIH

- Mikhail Kolmogorov
- Cornelis Blauwendraat
- Kimberley Billingsley
- Pilar Alvarez Jerez

#### Univ. California, Irvine

- Emmanuèle Délot
- Eric Vilain

#### Children's National Research Institute

- Seth Berger
- Paolo Canigiula

#### **INRAE**

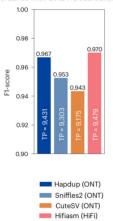
- Xian Chang
- Matthias Zytnicki



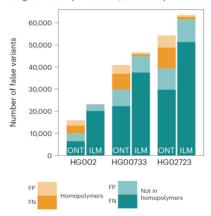






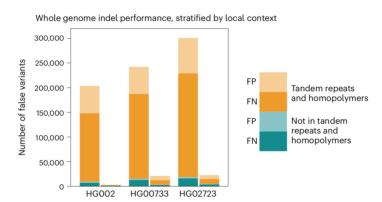






La science pour la santé
From science to health

## Better calls for both small and structural variants...



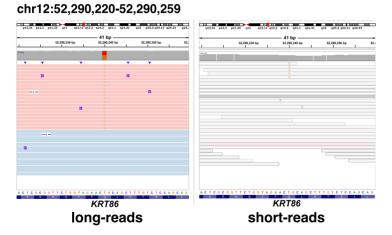



Whole genome SNP performance, stratified by local context



Kolmogorov\*, Billingsley\*, et al. Nature Methods 2023

## ...except for indels in homopolymers

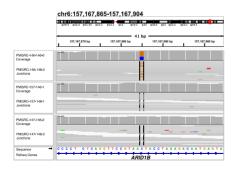


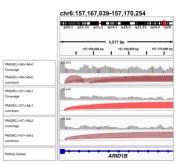

Note: Results above are for the R9 chemistry. The new R10 chemistry has lower error rate and better (indel) calling performance.

Kolmogorov\*, Billingsley\*, et al. Nature Methods 2023

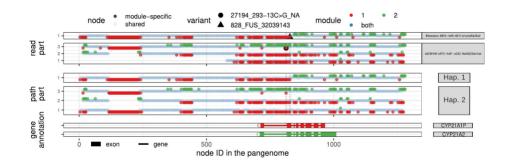
# Small variants found by long-reads only

Missense mutation in *KRT86* disease gene (monilethrix) invisible with short reads.





Negi et al. AJHG 2025

# Patient with complex neurodevelopmental phenotype


Variant of Uncertain Significance SNV in *ARID1B* gene (Coffin-Siris syndrome 1?).

• *De novo*, SRS and LRS, new splice site predicted *in silico* (SpliceAI).





## Trimodular alleles also detected

