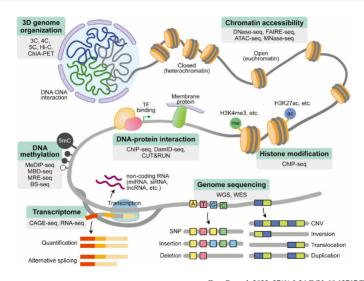


Integrating **structural variants** in genomic studies of rare and complex diseases with **long-read sequencing** and **pangenomes**


Jean Monlong

JOBIM 11/07/2025

Understanding functional impact of genomic variation

Dev. Reprod. 2023; 27(1):9-24 DOI: 10.12717/DR.2023.27.1.9

Different types of genomic variants

Single-nucleotide polymorphisms (SNPs)

Insertion-deletior polymorphisms (INDELs) Structural variants (SVs)

GATCAGC

GATCAGO

GATCAGO

GAT**G**AGC

GAT - - GC

GATCAGC

Different types of genomic variants

Single-nucleotide polymorphisms (SNPs) Insertion-deletion polymorphisms (INDELs)

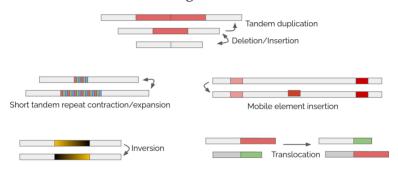
GATCAGC

GATCAGC

GATGAGC GAT - - GC

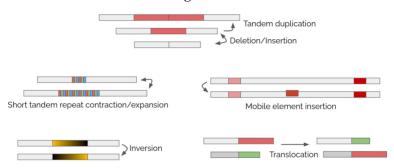
Structural variants (SVs)

GATCAGC GATC_AAGC

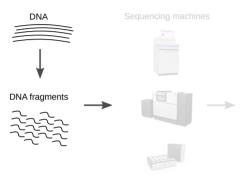

CGC....300bp....GAT

Different types of genomic variants

Single-nucleotide polymorphisms (SNPs)	Insertion-deletion polymorphisms (INDELs)	Structural variants (SVs)
GATCAGC	GAT CA GC	GATCAGC
GAT G AGC	GAT GC	GATC _▲ AGC
		CGC300bpGAT


Structural variants (SVs) come in diverse shapes and sizes

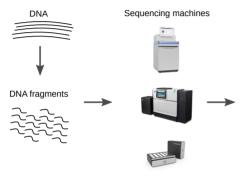
Variant size: from 50 bases to megabases.


Structural variants (SVs) come in diverse shapes and sizes

Variant size: from 50 bases to megabases.

- High functional impact
- Involved in rare and common diseases, and cancers.
- Hard to detect

Genome sequencing


File (~100-300 Gb)

@ERR903030.219 HWI-D00574:82:C6L01ANXX:3:1101:3953:1913/

- ${\tt AGCTCTTATTATTTGAAATATGTCCCATCAATACCTAATTTATTGAGGGTTTTTAGCATGAAGGGTTGTTGAAT +}$
- <<A07FGGGGGGGGGGGGGGGGGGGGGGGGGGC:CFCGDFGGFFG1FFG1FGGGFFFG1=FFFFGGGGFGC
 @ERR903030.220 HWI-D00574:82:C6L01ANXX:3:1101:3863:1914/1</pre>
- +

- gerry03030.222 HWI-D00574:82:C6L01ANXX:3:1101:3833:1922/1
 TACTGAAGAATCAGTGTCAGTTTTGTTAGTTGTAAATGACATTCTGCTAAGCTAAAGTATAGAGGGGAGAAA
- AAAAAATGAACTAAAAATGCATTAAAGACCAAATGTAATACCTAAAAATGTAAAACTTTTAGAAGGAAACATAGG +
- @ERR903030.224 HWI-D00574:82:C6L01ANXX:3:1101:3920:1929/1
- ATTCCATTCGATTCCATTCGATGATTCCATTCGATGATGATTCCATTCAAATCCATTCGATAAT
- =ABBGGGGGGGGGGGGGGGGGGGGGGGGGGGC>FFGGGEF@EDFCEGFGGGGGGGGGGGGGGGFB9EG

Genome sequencing

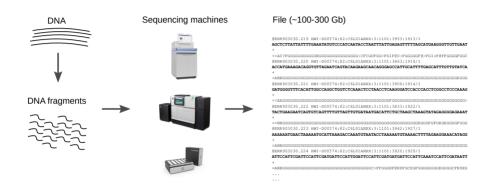
File (~100-300 Gb)

@ERR903030.219 HWI-D00574:82:C6L01ANXX:3:1101:3953:1913)

 ${\tt AGCTCTTATTTTGAAATATGTCCCATCAATACCTARTTTATTGAGAGTTTTTAGCATGAAGGGTTGTTGAAT+}$

@ERR903030.220 HWI-D00574:82:CGL01ANXX:3:1101:3863:1914/1

@RRG90303.0.221 RWI-D00574:82:C6L01ARXXI3:11101:3906:1914/1
GATGGGGTTTCACATTGGCCAGGCTGGTCTCAAACTCCTAACCTCAAGGGATCCACCCCACCTCGGCCTCCCAAG
+


@ERRE903030.222 HWI-D00574:82:C6L01ANXX:3:1101:3833:1922/1
TACTGAAGAATCAGTGTCAGTTTTGTTAGTTGTGATAATGACATTCTGCTAAGCTAAGTATAGAGGGGGGAAA

 ${\tt AARARATGAACTARARATGCATTARAGACCARATGTARTACCTARARATGTARAACTTTTAGAAGGARACATAGG} +$

@ERR903030.224 HWI-D00574:82:C6L01aNXX:3:1101:3920:1929/1
ATTCCATTCGATTCCATTCGATGATTCCATTCGATTCAAATCCATTC

...

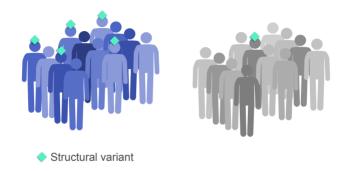
Genome sequencing

Sequencing reads

- Short: 150-250 bp (current tech)
- ► Long: 10,000s-100,000s bp (new tech. \$\$\$)

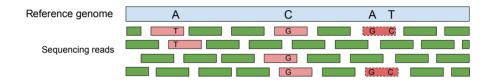
Outline - Studying structural variants

Short-read sequencing, pangenomes, and complex diseases

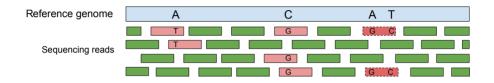

Long-read sequencing and rare diseases

Pangenomes meet long-read sequencing

Short-read sequencing, pangenomes, and complex diseases


Common variants associated with a complex disease

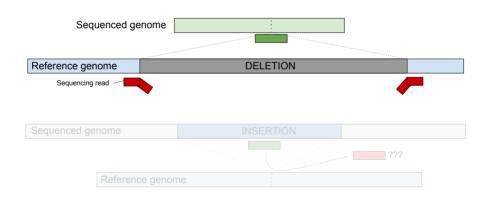
Goal


Genotype a comprehensive catalog of common variants across a large cohort.

Aligning reads to a reference genome

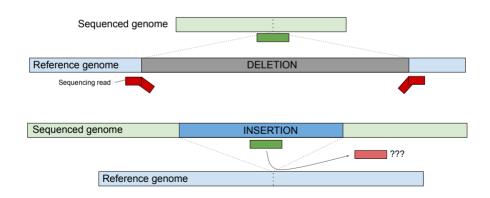
Assuming the reads are correctly placed, small variants are identified as recurrent differences between reads and the reference genome.

Aligning reads to a reference genome



Assuming the reads are correctly placed, small variants are identified as recurrent differences between reads and the reference genome.

Variants can be missed, resulting in **reference bias**.


The challenges of structural variant detection

Around breakpoints, short sequencing reads are hard to map on the reference genome.

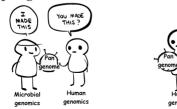
The challenges of structural variant detection

Around breakpoints, short sequencing reads are hard to map on the reference genome.

Pangenomics to the rescue. Which pangenomics?

Pangenomics to the rescue. Which pangenomics?

Not "Genome-wide association studies" in French.



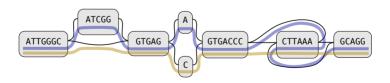
Pangenomics to the rescue. Which pangenomics?

Not "Genome-wide association studies" in French.

Also not exactly the set of **genes** from all strains within a clade, like in microbial pangenome.

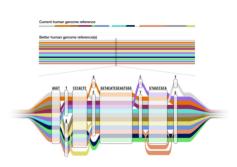
Pangenomes represent genetic diversity succinctly

A pangenome represents a **collection of genomes** and the genetic variants among them.

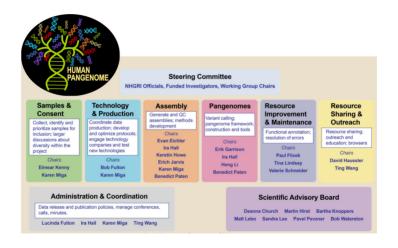

ATTGGGCATCGGGTGAGAGTGACCCTTTAAGGCAGG ATTGGGC----GTGAGCGTGACCCCTTAAAGCAGG

Pangenomes represent genetic diversity succinctly

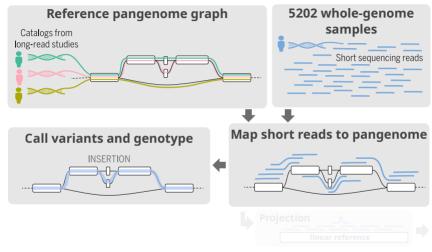
A pangenome represents a **collection of genomes** and the genetic variants among them.


ATTGGGCATCGGGTGAGAGTGACCCTTTAAGGCAGG ATTGGGC----GTGAGCGTGACCCCTTAAAGCAGG

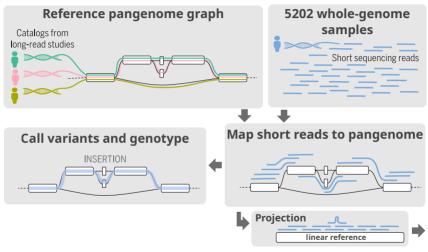
Building a Human pangenome reference



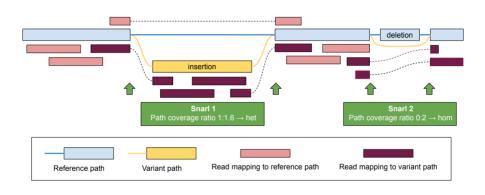
- Human Pangenome Reference Consortium (HPRC)
- Latest sequencing technologies for 350 diverse individuals
- Pangenome containing a comprehensive catalog of (structural) variants


Liao*, Asri*, Ebler*, et al. Nature 2023 Hickey*, Monlong*, et al. Nat. Biotechnol. 2023

Building a Human pangenome reference, a team effort

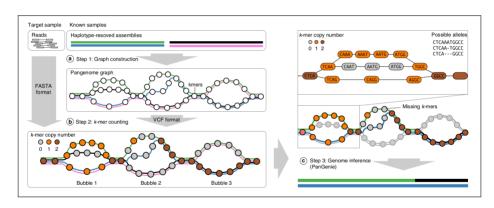

Check out the latest data at: https://data.humanpangenome.org

Short-read mapping and structural variant genotyping



Short-read mapping and structural variant genotyping

Genotyping structural variation from pangenomic mapping



https://github.com/vgteam/vg

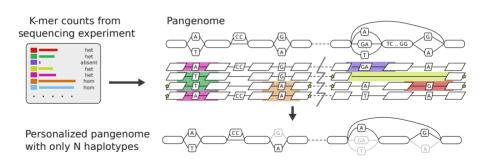
Hickey*, Heller*, Monlong*, et al. Genome Biology 2020

Genotyping structural variation from phased variants

PanGenie uses k-mer and haplotype information to genotype SVs.

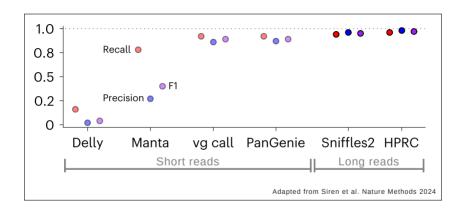
https://github.com/eblerjana/PanGenie

Ebler et al. Nature Genetics 2022


Personalized pangenomes with haplotype sampling

With pangenomes becoming larger, analysis can suffer.

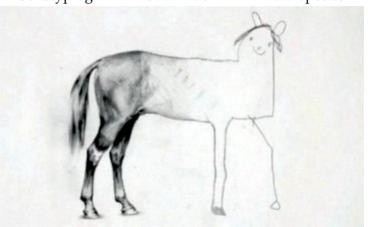
Personalized pangenomes with haplotype sampling


With pangenomes becoming larger, analysis can suffer.

One solution: k-mer-guided "down-sampling" of the full pangenome.

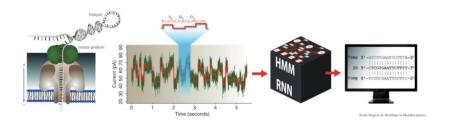
Sirén et al. Nature Methods 2024

Structural variant genotyping performance

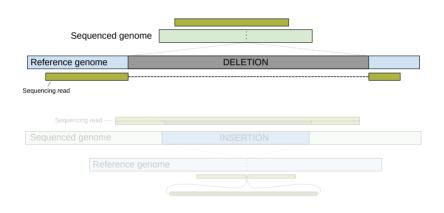


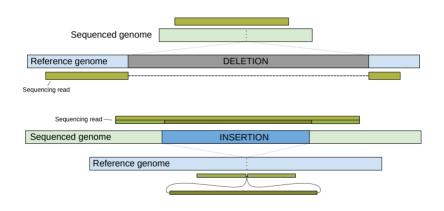
^{*}vg call and PanGenie using the "personalized pangenome" approach.

Current state of pangenomics tools


Construction Read mapping Genotyping Complex variants
Functional genomics
Visualization

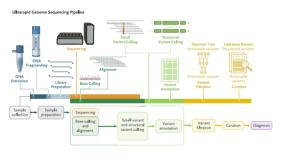
Annotation Association tests Multi-species


Long-read sequencing with Oxford Nanopore Technologies


As the DNA (or RNA) fragment passes through the pore, the current changes and is decoded to predict nucleotides.

Reads length of 1,000s-100,000s of nucleotides.

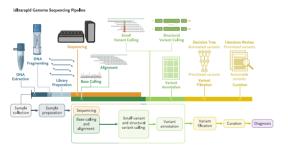
Longer reads improve structural variant detection


Longer reads improve structural variant detection

Oxford Nanopore is portable (space!) and fast

Oxford Nanopore is portable (space!) and fast

- Sequence as fast as possible
- Get a genomic diagnosis quick
- E.g. for newborns with suspicion of a rare genetic disease



Gorzynski et al. N. Engl. J. Med. 2022

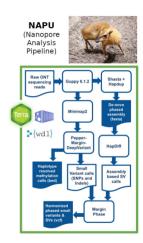
Goenka*, Gorzynski*, Shafin*, et al. Nat. Biotechnol. 2022

Oxford Nanopore is portable (space!) and fast

- Sequence as fast as possible
- Get a genomic diagnosis quick
- E.g. for newborns with suspicion of a rare genetic disease

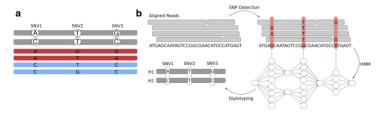
Gorzynski et al. N. Engl. J. Med. 2022 Goenka*, Gorzynski*, Shafin*, et al. Nat. Biotechnol. 2022

"Fastest DNA sequencing technique": 5h2m

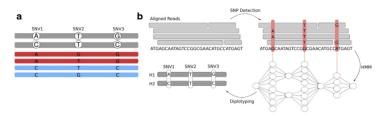


Cost-efficient Nanopore pipeline

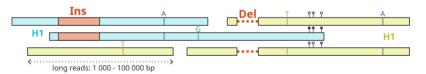
- Only one flow-cell of Nanopore
- → ~30X coverage with 30 Kbp N50 reads


Cost-efficient Nanopore pipeline

- Only one flow-cell of Nanopore
- → ~30X coverage with 30 Kbp N50 reads
- Nanopore Analysis Pipeline (U?) to get haplotype resolved:
 - 1. small variants (SNPs/indels)
 - 2. structural variants
 - 3. de novo assembly
 - 4. methylation marks

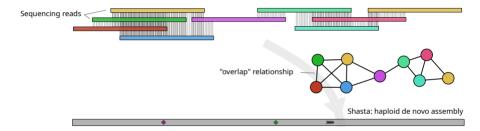

Kolmogorov*, Billingsley*, et al. Nature Methods 2023

Under the hood: phased variants and methylation calls

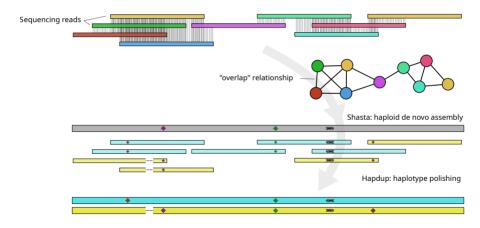


Reads are **haplo-tagged** using information across heterozygous sites with Margin (Ebler*, Haukness*, Pesout*, et al. Genome Biology 2019).

Under the hood: phased variants and methylation calls


Reads are **haplo-tagged** using information across heterozygous sites with Margin (Ebler*, Haukness*, Pesout*, et al. Genome Biology 2019).

Phased small variants (DeepVariant) and methylation calls (ModKit)


Under the hood: *de novo* genome assembly polishing

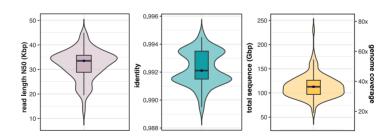
Reconstructs genomes without reference bias, hence better able to identify complex variants (e.g. combination of deletion/inversion)

Under the hood: *de novo* genome assembly polishing

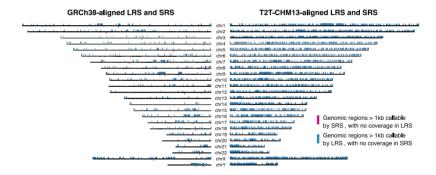
Reconstructs genomes without reference bias, hence better able to identify complex variants (e.g. combination of deletion/inversion)

Shafin*, Pesout*, Lorig-Roach*, Haukness*, Olsen*, et al. Nat. Biotechnol. 2020

 $Kolmogorov^*, Billingsley^*, et al.\ Nature\ Methods\ 2023$

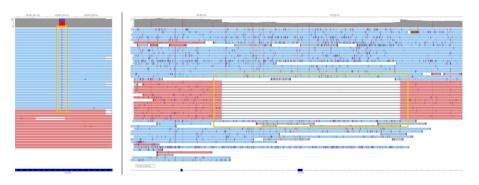

Application to a cohort of rare disease patients

Chan Zuckerberg Initiative®


42 probands and 56 unaffected family members, sequenced with one-flowcell of ONT long-read sequencing (R10).

Better coverage of confidently mapped reads

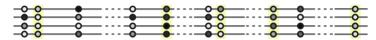
More of the CHM13-T2T genome covered with at least 10x.


• 93.99% (LRS) vs. 88.27% (SRS)

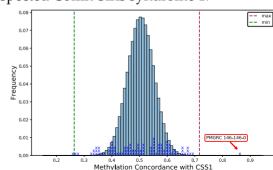
Resolving compound heterozygous variants

In *LHCGR* gene, associated with Leydig cell hypoplasia:

- Coding SNV on haplotype 1 (left, blue reads)
- ∼7 Kbp deletion of an exon on haplotype 2 (right, red reads)


Known episignature of Coffin-Siris syndrome 1

Episignature: methylation pattern, across 10-100s of sites, associated with disease.


Known episignature of Coffin-Siris syndrome 1

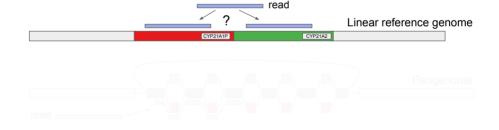
Episignature: methylation pattern, across 10-100s of sites, associated with disease.

One patient with suspected Coffin-Siris syndrome 1.

Methylation across 106 differentially methylated CpG sites from Aref-Eshghi et al.

Challenging RCCX modules in the HLA region

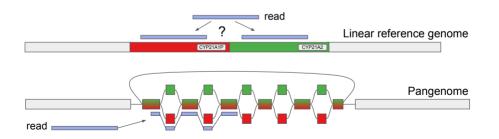
- ▶ Tandem-duplication of \sim 30 Kbp genetic *module* (99% similar).
- CYP21A1P pseudogene and CYP21A2 gene.
- Variants cause congenital adrenal hyperplasia (recessive).



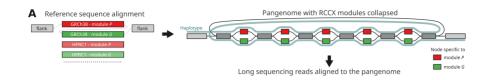
Parakit: paralog toolkit using collapsed pangenomes

Goal

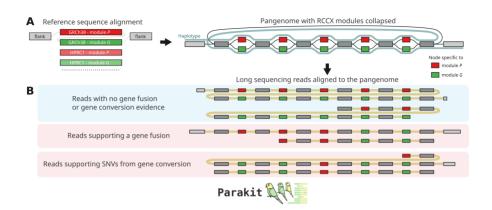
Address multi-mapping confusion by mapping to a **collapsed pangenome** and by analyzing the alignment profile.



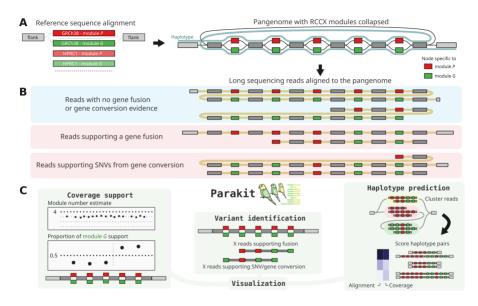
Parakit: paralog toolkit using collapsed pangenomes


Goal

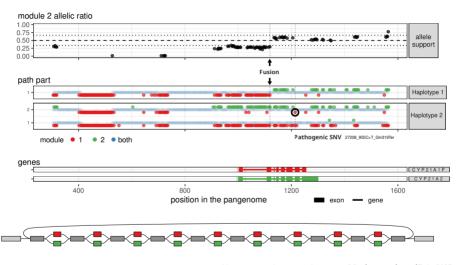
Address multi-mapping confusion by mapping to a **collapsed pangenome** and by analyzing the alignment profile.



https://github.com/jmonlong/parakit Monlong et al. medRxiv 2025



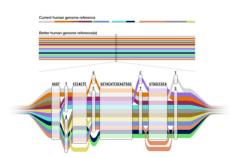
https://github.com/jmonlong/parakit Monlong et al. medRxiv 2025



https://github.com/jmonlong/parakit Monlong et al. medRxiv 2025

https://github.com/jmonlong/parakit Monlong et al. medRxiv 2025

Example: patients with a gene fusion and pathogenic SNV

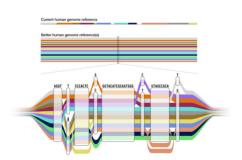


 $\verb|https://github.com/jmonlong/parakit| Monlong et al. medRxiv 2025|$

Conclusions

Two approaches to integrate structural variants into genomic studies:

Genotyping with pangenomes from short-read sequencing data, e.g. for genome-wide association studies.



Conclusions

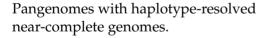
Two approaches to integrate structural variants into genomic studies:

Genotyping with pangenomes from short-read sequencing data, e.g. for genome-wide association studies.

Cost-effective **long-read sequencing** using nanopore technologies to help solve undiagnosed **rare disease** cases.

New bioinformatics avenues

Methods, tools, benchmark, and analysis needed!



Pangenomes with haplotype-resolved near-complete genomes.

Single-molecule long read sequencing (nanopore, PacBio).

New bioinformatics avenues

Methods, tools, benchmark, and analysis needed!

Single-molecule long read sequencing (nanopore, PacBio).

- Complex variants
- Repeat-rich regions
- Association studies
- Functional genomics
- Epigenomics
 - ...

Acknowledgments

Univ. California, Santa Cruz

- Benedict Paten
- Glenn Hickey
- Jouni Sirén na
- Adam Novak
- Xian Chang n
- Jordan Eizenga nd
- Shloka Negi
- Karen Miga
- Brandy McNulty
- Melissa Meredith
- Paolo Carnevali
- Trevor Pesout
- Kishwar Shafin
- Mira Mastoras
- Mobin Asri

INSERM IRSD

- Sarah Djebali
- Matis Alias-Bagarre

NIH

- Mikhail Kolmogorov
- Cornelis Blauwendraat
- Kimberley Billingsley
- Pilar Alvarez Jerez

Broad Institute

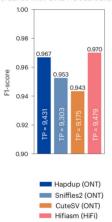
- Anne O'Donnell-Luria
- Sarah Stenton
- ➤ Melanie O'Leary

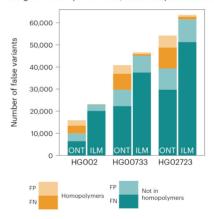
Univ. California, Irvine

- Emmanuèle Délot
- Eric Vilain

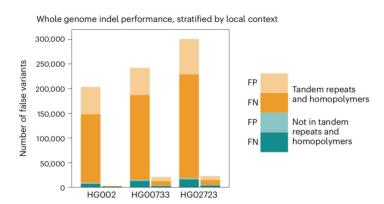
Children's National Research Institute

- Seth Berger
- Paolo Canigiula





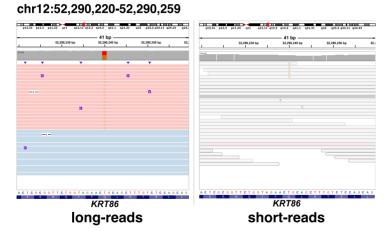
Better calls for both small and structural variants...



Whole genome SNP performance, stratified by local context

Kolmogorov*, Billingsley*, et al. Nature Methods 2023

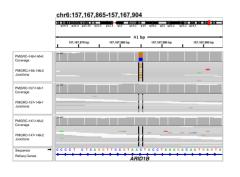
...except for indels in homopolymers

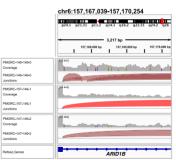


Note: Results above are for the R9 chemistry. The new R10 chemistry has lower error rate and better (indel) calling performance.

 $Kolmogorov^*, Billingsley^*, et al.\ Nature\ Methods\ 2023$

Small variants found by long-reads only


Missense mutation in *KRT86* disease gene (monilethrix) invisible with short reads.



Patient with complex neurodevelopmental phenotype

Variant of Uncertain Significance SNV in *ARID1B* gene (Coffin-Siris syndrome 1?).

• *De novo*, SRS and LRS, new splice site predicted *in silico* (SpliceAI).

