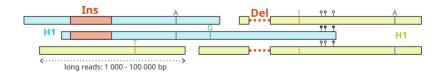
Comprehensive haplotype-resolved view of genomic variation and methylation with long-read nanopore sequencing

Jean Monlong 14/03/2025


SYMPOSIUM FHU-G4 GÉNOMIQUE

Outline

Introduction: genomic variants, DNA methylation, long-read sequencing

Napu computational pipeline

Application to a cohort of rare disease patients

Introduction: genomic variants, DNA methylation, long-read sequencing

Different types of genomic variants

Single-nucleotide polymorphisms (SNPs)

polymorphisms
(INDELs)

Structural variants (SVs)

GATCAGC

GAT**CA**GC

GATCAGC

GAT**G**AGC

GAT - - GC

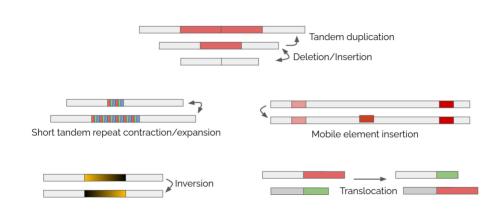
GATC_AGC

Different types of genomic variants

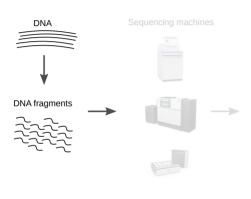
Single-nucleotide Insertion-deletion polymorphisms (SNPs)

polymorphisms (INDELs)

GATCAGC


GATGAGC GAT - - GC

GATCAGC


Different types of genomic variants

Single-nucleotide polymorphisms (SNPs)	Insertion-deletion polymorphisms (INDELs)	Structural variants (SVs)
GATCAGC	GAT CA GC	GATCAGC
GAT G AGC	GAT GC	GATC _▲ AGC
		CGC300bpGAT

Structural variants (SVs) come in diverse shapes and sizes

Genome sequencing

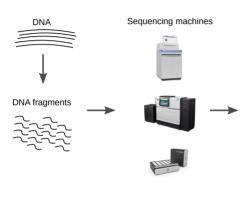
File (~100-300 Gb)

@ERR903030.219 HWI-D00574:82:C6L01ANXX:3:1101:3953:1913/1

AGCTCTTATTTTGAATATGTCCCATCAATACCTAATTTTTGGGAGGTTTTTAGCATGAAGGGTTGTTGAAT

GERR903030.220 HWI-0005748821C6L01AHXX:33:1101:3863:1914/1
ACCATGARACAGCAGTGTAGATCAGTACAAGAAGCACAGGGGGCATTGCATTTTGAGCATTTTGTATCA

9ERR903030.222 HWI-D00574:82:C6L01ANXX:3:1101:3833:1922/1


+

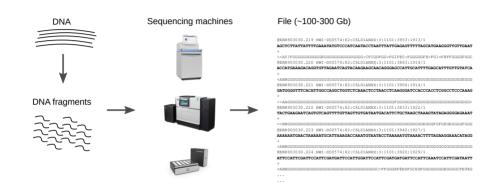
AAAAATGAACTAAAAATGCATTAAAGACCAAATGTAATACCTAAAAATGTAAAACTTTTAGAAGGAAACATAG

#REFROGROUGH AND THE TOTAL TO THE TOTAL TO THE TOTAL THE

...

Genome sequencing

File (~100-300 Gb)


@ERR903030.219 HWI-D00574:82:C6L01ANXX:3:1101:3953:1913/1

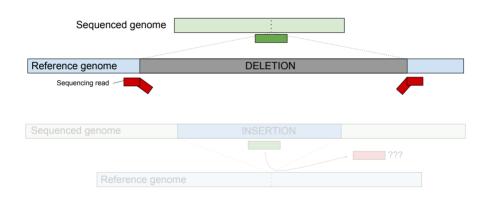
 ${\tt GATGGGGTTCACATTGGCCAGGCTGGTCTCAACTCCTAACTCAAGGGATCCACCACCTCGGCCTCCCAAAG+}$

@ERR903030.222 HWI-D00574:82:C6L01ANXX:3:1101:3833:1922/1
TACTGAAGAATCAGTGTCAGTTTTGTTAGTTGTGATAATGACATTCTGCTAAGCTAAGTATAGAGGGGAGAAAT

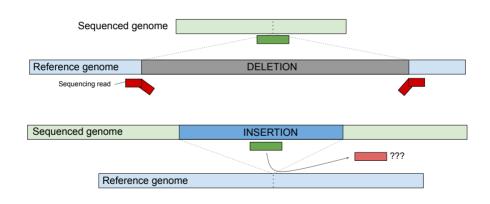
@RRR903030.224 HMI-D00574:@2:C6L01ANXX:3:1101:3920:1929/1
ATTCCATTCGATTCGATTGGATTCCATTGGATTCCATTCGATGATGATTCCATTCAAATCCAT7
+

Genome sequencing

Sequencing reads

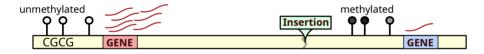

- 150-250 bp (current tech)
- ◆ 10,000s-100,000s bp (new tech. \$\$\$)

Aligning reads to a reference genome



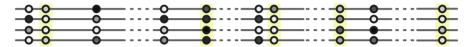
Assuming the reads are correctly placed, small variants are identified as recurrent differences between reads and the reference genome.

The challenges of structural variant detection

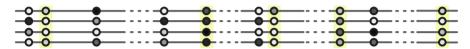


The challenges of structural variant detection

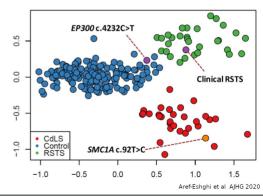
DNA methylation


Epigenetic modification of the DNA, e.g. 5m-cytosine at CpG sites. More promoter methylation \rightarrow less transcription.

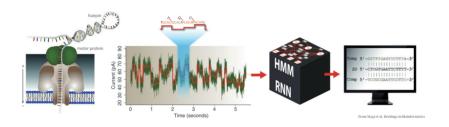
Aberrant methylation patterns can cause diseases (e.g. FMR1 in FXS).


Episignatures of disease

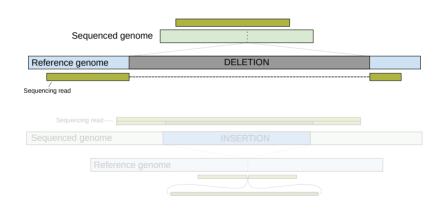
Methylation pattern, across 10-100s of sites, associated with disease.

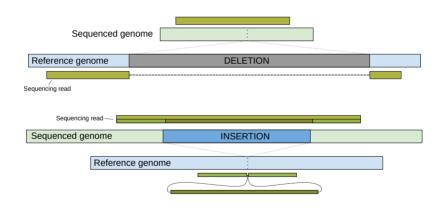


Episignatures of disease


Methylation pattern, across 10-100s of sites, associated with disease.

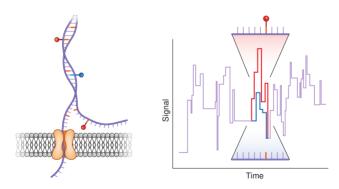
Aref-Eshghi et al. (AJHG 2020) found an episignature with 34 genetic syndromes, from blood samples using methylation arrays.


Long-read sequencing with Oxford Nanopore Technologies


As the DNA (or RNA) fragment passes through the pore, the current changes and is decoded to predict nucleotides.

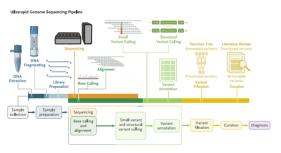
Reads length of 1,000s-100,000s of nucleotides.

Longer reads improve structural variant detection



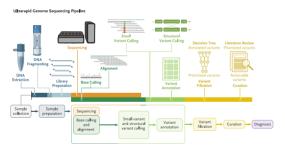
Longer reads improve structural variant detection

Nanopore sequencing can detect DNA/RNA modifications


- 5-methylcysosine (5mC) for DNA/RNA
- 4-methylcysosine (4mC) for DNA
- N⁶-Methyladenine (6mA) for DNA/RNA

Schatz, Nature Methods 2023

ONT is portable (space!) and fast


- Sequence as fast as possible
- Get a genomic diagnosis quick
- E.g. for newborns with suspicion of a rare genetic disease

Gorzynski et al. N. Engl. J. Med. 2022 Goenka, Gorzynski, Shafin, et al. Nat. Biotechnol. 2022

ONT is portable (space!) and fast

- Sequence as fast as possible
- Get a genomic diagnosis quick
- E.g. for newborns with suspicion of a rare genetic disease

Gorzynski et al. N. Engl. J. Med. 2022 Goenka, Gorzynski, Shafin, et al. Nat. Biotechnol. 2022

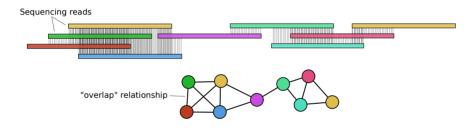
"Fastest DNA sequencing technique": 5h2m

Napu computational pipeline

Cost-efficient Nanopore pipeline

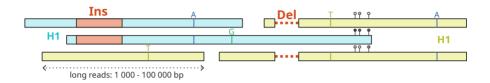
- Only one flow-cell of Nanopore
- \sim ~30X coverage with 30 Kbp N50 reads

Cost-efficient Nanopore pipeline


- Only one flow-cell of Nanopore
- ~30X coverage with 30 Kbp N50 reads
- Nanopore Analysis Pipeline (U?) to get haplotype resolved:
 - 1. small variants (SNPs/indels)
 - 2. structural variants
 - 3. de novo assembly
 - 4. methylation marks

Kolmogorov, Billingsley, et al. Nature Methods 2023

Longer reads enable *de novo* genome assembly

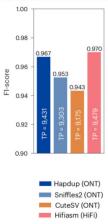

Reconstructs genomes without reference bias, hence better able to identify complex variants (e.g. combination of deletion/inversion)

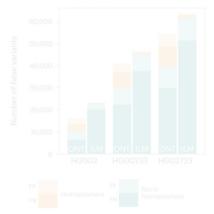
The Shasta assembler is an overlap-layout-consensus assembler for Nanopore reads.

Shafin, Pesout, Lorig-Roach, Haukness, Olsen, et al. Nat. Biotechnol. 2020

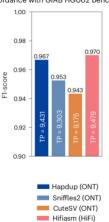
Phased variants and methylation calls

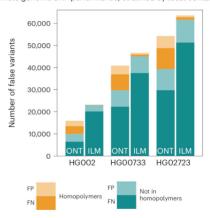
Reads are **haplo-tagged** using information across heterozygous sites.


- Phased structural variants with Hapdup
- Phased small variants with DeepVariant
- Phased methylation calls with ModKit

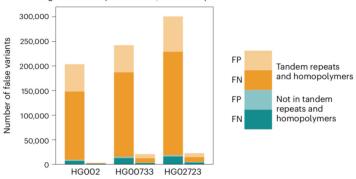

Kolmogorov, Billingsley, et al. Nature Methods 2023

Better calls for both small and structural variants...



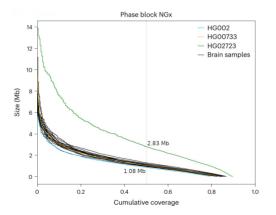

Kolmogorov, Billingslev, et al. Nature Methods 2023

Better calls for both small and structural variants...


Whole genome SNP performance, stratified by local context

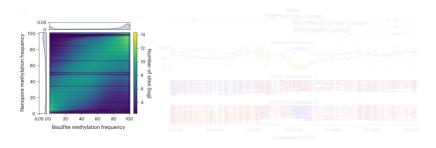
Kolmogorov, Billingsley, et al. Nature Methods 2023

...except for indels in homopolymers



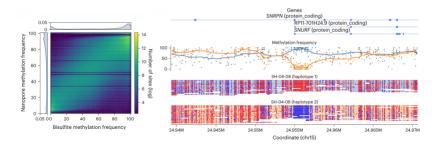
Note: Results above are for the R9 chemistry. The new R10 chemistry has lower error rate and better (indel) calling performance.

Kolmogorov, Billingsley, et al. Nature Methods 2023


Variants and methylation phased in Mbp-long blocks

Small variants, structural variants, methylation marks are homogenized into megabase-long phase blocks.

Haplotype-resolved methylation at CpG sites

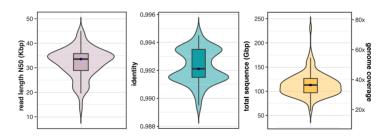

- Good concordance with short-read bisulfite sequencing.
- Haplotype-specific methylation patterns.

Kolmogorov, Billingsley, et al. Nature Methods 2023

Haplotype-resolved methylation at CpG sites

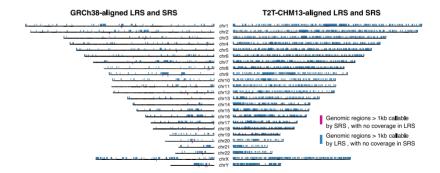
- Good concordance with short-read bisulfite sequencing.
- Haplotype-specific methylation patterns.

Kolmogorov, Billingsley, et al. Nature Methods 2023


Application to a cohort of rare disease patients

Chan Zuckerberg Initiative®

42 probands and 56 unaffected family members, sequenced with one-flowcell of ONT long-read sequencing (R10).



Negi et al. AJHG 2025

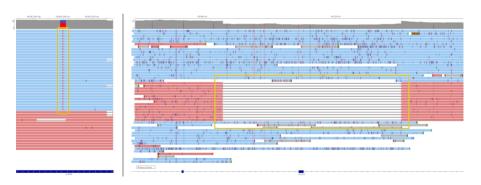
Better coverage of confidently mapped reads

More of the CHM13-T2T genome covered with at least 10x.

• 93.99% (LRS) vs. 88.27% (SRS)

Negi et al. AJHG 2025

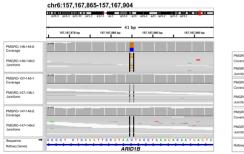
Small variants found by long-reads only


Missense mutation in *KRT86* disease gene (monilethrix) invisible with short reads.

Compound heterozygous variants thanks to phasing information

In *LHCGR* gene, associated with Leydig cell hypoplasia:

- Coding SNV on haplotype 1 (left, blue reads)
- ~7 Kbp deletion of an exon on haplotype 2 (right, red reads)

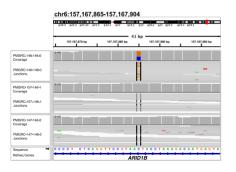


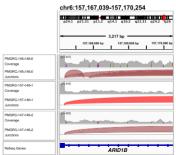
Negi et al. AJHG 2025

Patient with complex neurodevelopmental phenotype

Variant of Uncertain Significance SNV in *ARID1B* gene (Coffin-Siris syndrome 1?).

• *De novo*, SRS and LRS, new splice site predicted *in silico* (SpliceAI).

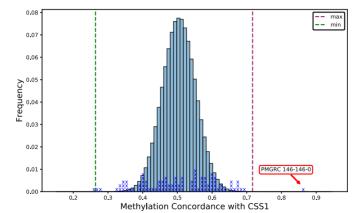




Patient with complex neurodevelopmental phenotype

Variant of Uncertain Significance SNV in *ARID1B* gene (Coffin-Siris syndrome 1?).

• *De novo*, SRS and LRS, new splice site predicted *in silico* (SpliceAI).


Negi et al. AJHG 2025

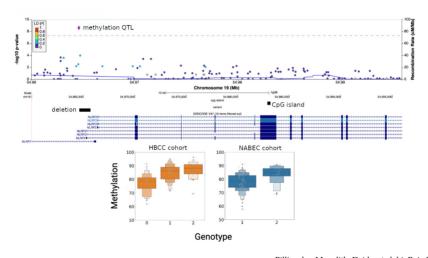
▶ 106 differentially methylated CpG sites from Aref-Eshghi et al.

- 106 differentially methylated CpG sites from Aref-Eshghi et al.
- Count sites hyper/hypo-methylated consistently with known episignature.

- 106 differentially methylated CpG sites from Aref-Eshghi et al.
- Count sites hyper/hypo-methylated consistently with known episignature.
- Significance by permuting sites across samples.

- 106 differentially methylated CpG sites from Aref-Eshghi et al.
- Count sites hyper/hypo-methylated consistently with known episignature.
- Significance by permuting sites across samples.

Large-scale study of brain samples


New resource: 351 brain control samples sequenced in the NIH's Center of Alzheimer's and Related Dementias (CARD) long-read sequencing initiative.

- 234,905 SVs
- >800 SV expression QTLs
- >2000 SV methylation QTLs

Billingsley, Meredith, Daida, et al. bioRxiv 2024

Example of a SV methylation QTL

Billingsley, Meredith, Daida, et al. bioRxiv 2024

Take-home message

Cost-effective **long-read sequencing** using nanopore technologies to help solve undiagnosed **rare disease** cases.

Haplotype-resolved

- small variants (SNPs/indels)
- structural variants
- de novo assembly
- methylation marks

Kolmogorov, Billingsley, et al. Nature Methods 2023

Negi et al. AJHG 2025

Acknowledgments

Univ. California, Santa Cruz

- Benedict Paten
- Shloka Negi
- Karen Miga
- Brandy McNultyMelissa Meredith
- D 1 C 1:
- Paolo Carnevali
- Trevor PesoutKishwar Shafin
- Ivo Violich
- Joshua Gardner
- Sara M. O'Rourke
- Mira Mastoras
- Mobin Asri

NIH

- Mikhail Kolmogorov
- Cornelis Blauwendraat
- Kimberley Billingsley
- Pilar Alvarez Jerez

Broad Institute

- Anne O'Donnell-Luria
- Sarah Stenton
- Melanie O'Leary

Univ. California, Irvine

- Emmanuèle Délot
- Eric Vilain

Children's National

Research Institute

- Seth Berger
- Paolo Canigiula

Chan Zuckerberg Initiative

