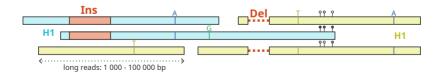
Integrating structural variants in genomic studies with long-read sequencing and pangenomes

Jean Monlong 23/05/2025


CRCT BIOINFORMATICS SEMINAR

Outline

Introduction: genome sequencing and genomic variants

Structural variants and rare disease with long-read sequencing

Structural variants and complex disease with pangenomes

Introduction: genome sequencing and genomic variants

Different types of genomic variants

Single-nucleotide polymorphisms (SNPs)

Insertion-deletior polymorphisms (INDELs)

Structural variants (SVs)

GAT**C**AGC GAT**G**AGC GATCAGO

GC

GATCAGC

GATC AGC

Different types of genomic variants

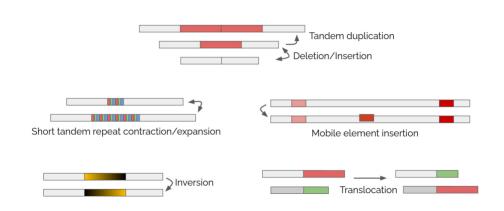
Single-nucleotide polymorphisms (SNPs)

Insertion-deletion polymorphisms (INDELs)

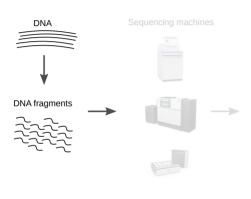
Structural variants (SVs)

GATCAGC

GATCAGC


GATGAGC GAT - - GC

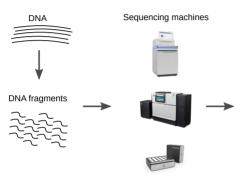
GATC AGC


Different types of genomic variants

Single-nucleotide polymorphisms (SNPs)	Insertion-deletion polymorphisms (INDELs)	Structural variants (SVs)
GATCAGC	GAT CA GC	GATCAGC
GAT G AGC	GAT GC	GATCAGC

Structural variants (SVs) come in diverse shapes and sizes

Genome sequencing


File (~100-300 Gb)

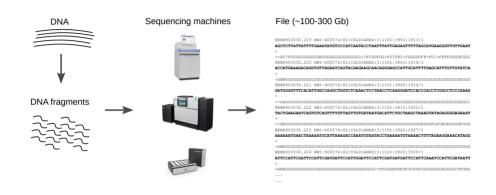
#ERR903030.219 HWI-D00574:82:C6L01ANXX:3:1101:3953:1913/1

@ERR903030.220 HWI-D00574:82:C6L01ANXX:3:1101:3863:1914/1
ACCATGAAGACAGGTGTTAGAATCAGTACAAGAAGCAACAGGGAGCCATTGCATTTTTGAGCATTTGTTGTATCA

AAAAATGAACTAAAAATGCATTAAAGACCAAATGTAATACCTAAAAATGTAAAACTTTTAGAAGGAAACATAG +

Genome sequencing

File (~100-300 Gb)


@ERR903030.219 HWI-D00574:82:C6L01ANXX:3:1101:3953:1913/1

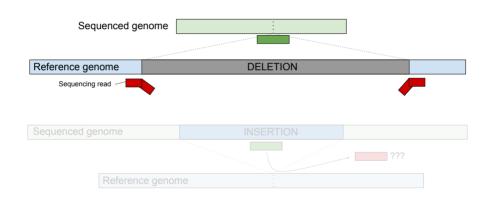
@ERR903030.222 HWI-D00574:82:C6L01ANXX:3:1101:3833:1922/1
TACTGAAGAATCAGTGTCAGTTTTGTTAGTTGTGATAATGACATTCTGCTAAGCTAAAGTATAGAGGGGAGAAAT

+
=ABBGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGCSFFGGGF(BEDFCEGFGGGGGGGGGGGGGGFB)EG

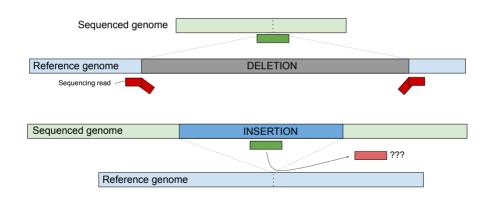
-ADDITIONAL OUT OF THE PROPERTY OF THE PROPERT

Genome sequencing

Sequencing reads

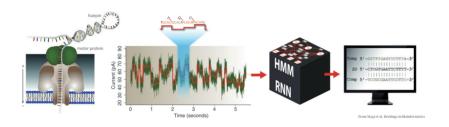

- ◆ 150-250 bp (current tech)
- ▶ 10,000s-100,000s bp (new tech. \$\$\$)

Aligning reads to a reference genome



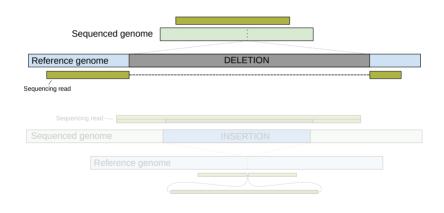
Assuming the reads are correctly placed, small variants are identified as recurrent differences between reads and the reference genome.

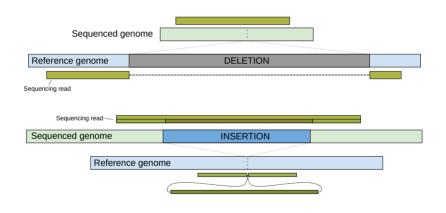
The challenges of structural variant detection



The challenges of structural variant detection

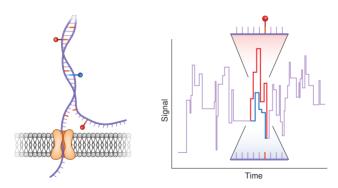
Structural variants and rare disease with long-read sequencing


Long-read sequencing with Oxford Nanopore Technologies


As the DNA (or RNA) fragment passes through the pore, the current changes and is decoded to predict nucleotides.

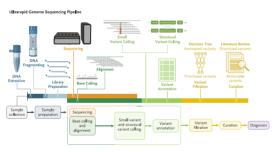
Reads length of 1,000s-100,000s of nucleotides.

Longer reads improve structural variant detection



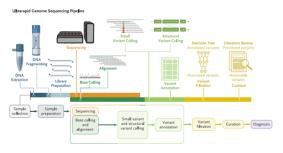
Longer reads improve structural variant detection

Nanopore sequencing can detect DNA/RNA modifications


- 5-methylcysosine (5mC) for DNA/RNA
- 4-methylcysosine (4mC) for DNA
- N⁶-Methyladenine (6mA) for DNA/RNA

Schatz, Nature Methods 2023

ONT is portable (space!) and fast


- Sequence as fast as possible
- Get a genomic diagnosis quick
- E.g. for newborns with suspicion of a rare genetic disease

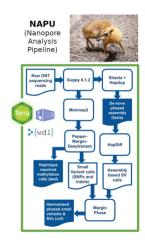
Gorzynski et al. N. Engl. J. Med. 2022 Goenka, Gorzynski, Shafin, et al. Nat. Biotechnol. 2022

ONT is portable (space!) and fast

- Sequence as fast as possible
- Get a genomic diagnosis quick
- E.g. for newborns with suspicion of a rare genetic disease

Gorzynski et al. N. Engl. J. Med. 2022 Goenka, Gorzynski, Shafin, et al. Nat. Biotechnol. 2022

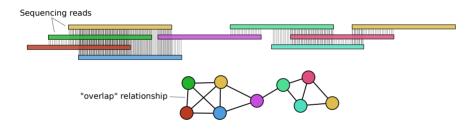
"Fastest DNA sequencing technique": 5h2m



Cost-efficient Nanopore pipeline

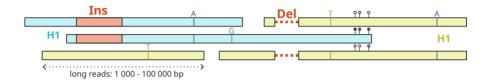
- Only one flow-cell of Nanopore
- \sim ~30X coverage with 30 Kbp N50 reads

Cost-efficient Nanopore pipeline


- Only one flow-cell of Nanopore
- → ~30X coverage with 30 Kbp N50 reads
- Nanopore Analysis Pipeline (U?) to get haplotype resolved:
 - 1. small variants (SNPs/indels)
 - 2. structural variants
 - 3. de novo assembly
 - 4. methylation marks

Kolmogorov, Billingsley, et al. Nature Methods 2023

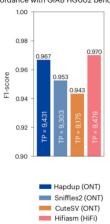
Longer reads enable *de novo* genome assembly


Reconstructs genomes without reference bias, hence better able to identify complex variants (e.g. combination of deletion/inversion)

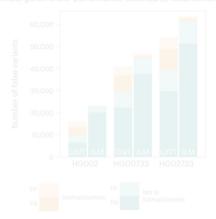
The Shasta assembler is an overlap-layout-consensus assembler for Nanopore reads.

Shafin, Pesout, Lorig-Roach, Haukness, Olsen, et al. Nat. Biotechnol. 2020

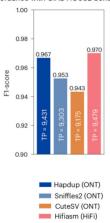
Phased variants and methylation calls

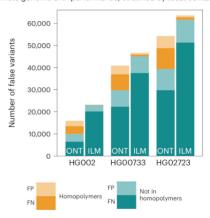

Reads are **haplo-tagged** using information across heterozygous sites.

- Phased structural variants with Hapdup
- Phased small variants with DeepVariant
- Phased methylation calls with ModKit

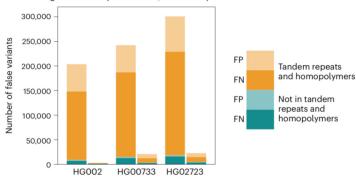

Kolmogorov, Billingsley, et al. Nature Methods 2023

Better calls for both small and structural variants...


Whole genome SNP performance, stratified by local context


Kolmogorov, Billingslev, et al. Nature Methods 2023

Better calls for both small and structural variants...


Whole genome SNP performance, stratified by local context

Kolmogorov, Billingsley, et al. Nature Methods 2023

...except for indels in homopolymers



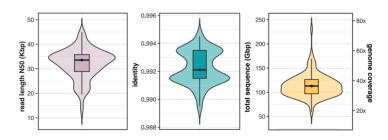
Note: Results above are for the R9 chemistry. The new R10 chemistry has lower error rate and better (indel) calling performance.

Kolmogorov, Billingsley, et al. Nature Methods 2023

Pathogenic variants in undiagnosed rare disease patients

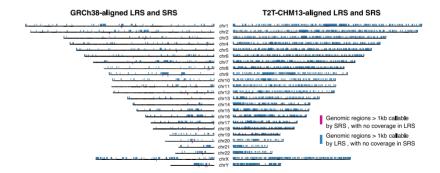
Goal

- Identify as many variants as possible
- All types, all sizes, across the whole genome


Application to a cohort of rare disease patients

Chan Zuckerberg Initiative

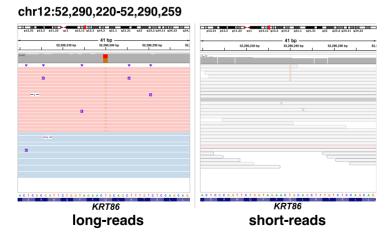
42 probands and 56 unaffected family members, sequenced with one-flowcell of ONT long-read sequencing (R10).



Negi et al. AJHG 2025

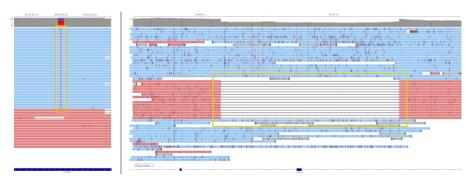
Better coverage of confidently mapped reads

More of the CHM13-T2T genome covered with at least 10x.


• 93.99% (LRS) vs. 88.27% (SRS)

Negi et al. AJHG 2025

Small variants found by long-reads only


Missense mutation in *KRT86* disease gene (monilethrix) invisible with short reads.

Compound heterozygous variants thanks to phasing information

In *LHCGR* gene, associated with Leydig cell hypoplasia:

- Coding SNV on haplotype 1 (left, blue reads)
- \sim 7 Kbp deletion of an exon on haplotype 2 (right, red reads)

Negi et al. AJHG 2025

Collaboration with Genetic Unit

Dr. Julie Plaisancié

CHU Toulouse

Centre de Référence des Anomalies Rares en

Génétique Ophtalmologiques

 Patients with severe and bilateral ocular phenotypes, e.g. microphthalmia (small eye) or anophthalmia (no eye).

Collaboration with Genetic Unit

Dr. Julie Plaisancié

CHU Toulouse

Centre de Référence des Anomalies Rares en

Génétique Ophtalmologiques

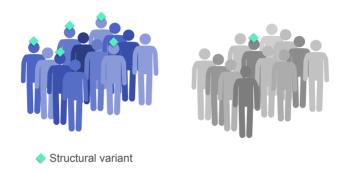
- Patients with severe and bilateral ocular phenotypes, e.g. microphthalmia (small eye) or anophthalmia (no eye).
- Subset of patients still undiagnosed after whole-genome short-read sequencing.

Collaboration with Genetic Unit

Dr. Julie Plaisancié

CHU Toulouse

Centre de Référence des Anomalies Rares en Génétique Ophtalmologiques



- Patients with severe and bilateral ocular phenotypes, e.g. microphthalmia (small eye) or anophthalmia (no eye).
- Subset of patients still undiagnosed after whole-genome short-read sequencing.

- Goal: test long-read sequencing and NAPU to solve those cases.
 - Ongoing: Nanopore sequencing for 8 patients at Genotoul/GeT-PlaGe.

Structural variants and complex disease with pangenomes

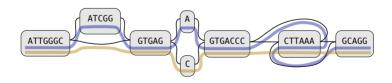
Common variants associated with a complex disease


Goal

Genotype a comprehensive catalog of common variants across a large cohort.

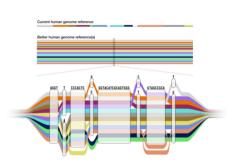
Pangenomes represent genetic diversity succinctly

A pangenome represents a **collection of genomes** and the genetic variants among them.

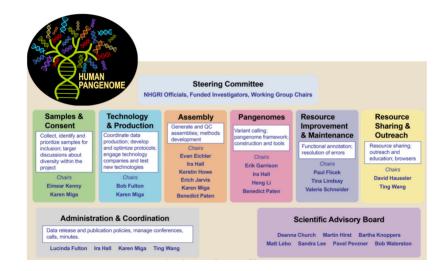

ATTGGGCATCGGGTGAGAGTGACCCTTTAAGGCAGG ATTGGGC----GTGAGCGTGACCCCTTAAAGCAGG

Pangenomes represent genetic diversity succinctly

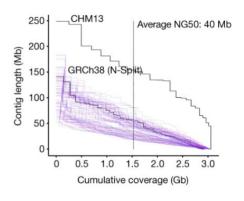
A pangenome represents a **collection of genomes** and the genetic variants among them.


ATTGGGCATCGGGTGAGAGTGACCCTTTAAGGCAGG ATTGGGC----GTGAGCGTGACCCCTTAAAGCAGG

Building a Human pangenome reference

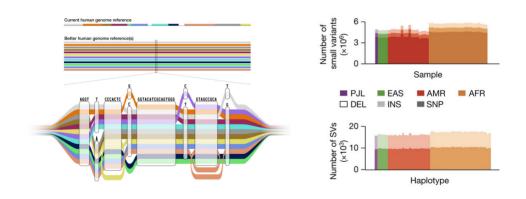


- Human Pangenome Reference Consortium (HPRC)
- Latest sequencing technologies for 350 diverse individuals
- Pangenome containing a comprehensive catalog of (structural) variants

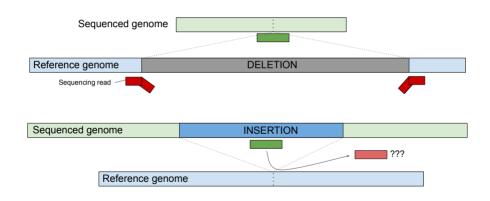

Liao, Asri, Ebler, et al. Nature 2023 Hickey, Monlong, et al. Nat. Biotechnol. 2023

Building a Human pangenome reference, a team effort

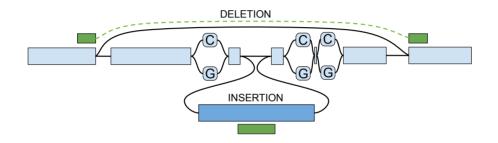
Year 1: 47 phased diploid assemblies of high quality


- GRCh38 (bottom black line): latest official reference genome
- CHM13 (top black line): recent complete telomere-to-telomere genome
- HPRC assemblies (light blue lines)

Liao, Asri, Ebler, et al. Nature 2023

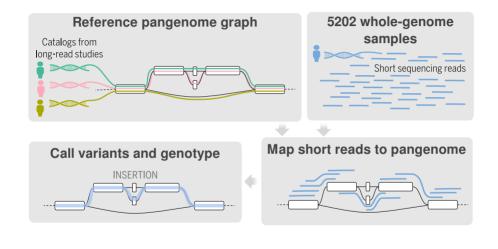

Year 1: pangenome(s) from 47 phased diploid assemblies

https://github.com/human-pangenomics/hpp_pangenome_resources



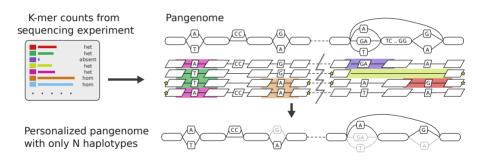
Liao, Asri, Ebler, et al. Nature 2023

Remember the challenges of structural variant detection

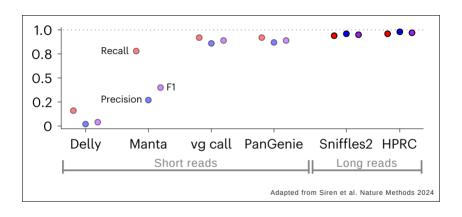

Aligning reads to a reference pangenome to genotype structural variants

Hickey, Heller, Monlong, et al. Genome Biology 2020

Siren, Monlong, Chang, Novak, Eizenga, et al. Science 2021


Short-read mapping and structural variant genotyping

Siren*, Monlong*, Chang*, Novak*, Eizenga*, et al. Science 2021


Personalized pangenomes with haplotype sampling

K-mer-guided "down-sampling" of the full pangenome.

Sirén et al. Nature Methods 2024

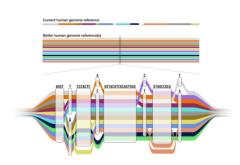
Structural variant genotyping performance

^{*}vg call and Pangenie using the latest "personalized pangenome" mapping approach from Sirén et al. Nature Methods 2024.

Conclusions

Two approaches to integrate structural variants into genomic studies:

Cost-effective **long-read sequencing** using nanopore technologies to help solve undiagnosed **rare disease** cases.


Conclusions

Two approaches to integrate structural variants into genomic studies:

Cost-effective **long-read sequencing** using nanopore technologies to help solve undiagnosed **rare disease** cases.

Genotyping with **pangenomes** from **short-read sequencing** data, e.g. for **genome-wide association studies**.

Acknowledgments

Univ. California, Santa Cruz

- Benedict Paten
- Shloka Negi
- Karen MigaGlenn Hickey
- Brandy McNulty
- Melissa Meredith
- Paolo Carnevali
- Trevor Pesout
- Kishwar Shafin
- Mira Mastoras
- Mobin Asri
- Adam Novak
- Xian Chang
- Jordan Eizenga

IRSD

- Sarah Djebali
- Hélène Coppin
- Marie-Paule Roth
- Delphine Meynard

NIH

- Mikhail Kolmogorov
- Cornelis Blauwendraat
- Kimberley Billingsley
- Pilar Alvarez Jerez

Broad Institute

- Anne O'Donnell-Luria
- Sarah Stenton
- Melanie O'Leary

Univ. California, Irvine

- Emmanuèle Délot
- Eric Vilain

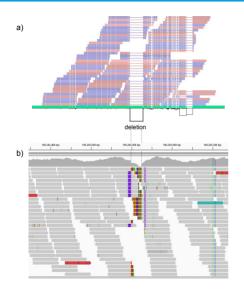
Children's National Research Institute

- Seth Berger
- Paolo Canigiula

CHU Toulouse

Julie Plaisancié

Chan Zuckerberg Initiative



Example of a deletion

Reads are correctly aligned "through" the deletion on the pangenome.

Many reads are aligned to the linear reference with the end unaligned (soft-clipped).

Long-Read Somatic Variant Calling

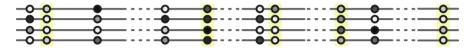
Severus: somatic complex and haplotype-specific SVs

"takes advantage of long-read phasing and uses the breakpoint graph framework to model complex chromosomal rearrangements." Keskus et al. Nature Biotech 2025

Long-Read Somatic Variant Calling

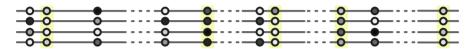
Severus: somatic complex and haplotype-specific SVs

"takes advantage of long-read phasing and uses the breakpoint graph framework to model complex chromosomal rearrangements." Keskus et al. Nature Biotech 2025

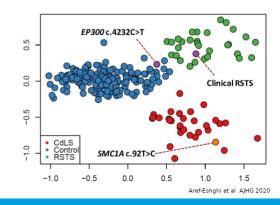

Pipeline from the Kolmogorov Lab

https://github.com/KolmogorovLab/longread_somatic_nf

- Alignment with minimap2
- Small variant calling with Clair3
- Phasing with longphase
- Somatic SV calling with Severus
- CNA calling with Wakhan
- Somatic small variant calling with DeepSomatic

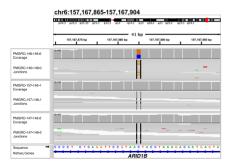

Episignatures of disease

Methylation pattern, across 10-100s of sites, associated with disease.



Episignatures of disease

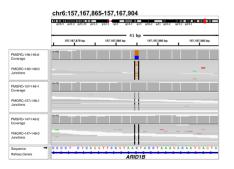
Methylation pattern, across 10-100s of sites, associated with disease.

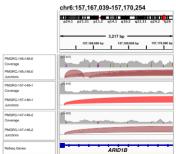

Aref-Eshghi et al. (AJHG 2020) found an episignature with 34 genetic syndromes, from blood samples using methylation arrays.

Patient with complex neurodevelopmental phenotype

Variant of Uncertain Significance SNV in *ARID1B* gene (Coffin-Siris syndrome 1?).

• *De novo*, SRS and LRS, new splice site predicted *in silico* (SpliceAI).

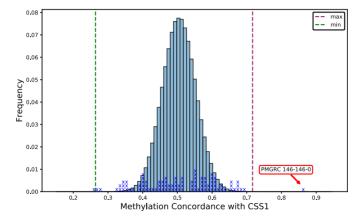




Patient with complex neurodevelopmental phenotype

Variant of Uncertain Significance SNV in *ARID1B* gene (Coffin-Siris syndrome 1?).

• *De novo*, SRS and LRS, new splice site predicted *in silico* (SpliceAI).



▶ 106 differentially methylated CpG sites from Aref-Eshghi et al.

- ▶ 106 differentially methylated CpG sites from Aref-Eshghi et al.
- Count sites hyper/hypo-methylated consistently with known episignature.

- 106 differentially methylated CpG sites from Aref-Eshghi et al.
- Count sites hyper/hypo-methylated consistently with known episignature.
- Significance by permuting sites across samples.

- 106 differentially methylated CpG sites from Aref-Eshghi et al.
- Count sites hyper/hypo-methylated consistently with known episignature.
- Significance by permuting sites across samples.

