Genotyping structural variants in pangenome graphs using the vg toolkit

Jean Monlong November 7, 2019 SHATE CALIFORNIA Genomical Institute

Genome Informatics

Pangenome graphs and variant-aware read mapping

Introduction

Mapping reads across structural variants

Structural variants are genomic variants larger than 50 bp, e.g. insertions, deletions, inversions translocations.

Introduction

SV catalogs from long-read sequencing studies

Ref.	Project	Samples
Chaisson et al. 2019	Human Genome Structural	3
	Variation Consortium (HGSVC)	
Audano et al. 2019	SVPOP	15
Zook et al. 2019	Genome in a Bottle (GIAB)	1

Introduction

The vg toolkit is a complete, open source solution for graph construction, read mapping, and variant calling.

https://github.com/vgteam/vg

Garrison et al. Nature Biotech 2018

Can we genotype SVs from short-read sequencing datasets with the vg toolkit?

Starting from public SV catalogs or de novo assemblies.

Hickey et al. bioRxiv 2019

Genotyping public SV catalogs in human

Evaluate genotype predictions for a sample from the truth set (e.g. HG00514).

Genotyping variants in vg

- Genotyping is based on the path coverage.
- ◆ A snarl is a variant site in the graph, a "bubble".

Evaluating SV genotypes with a truth set

Deletions/Inversions At least 50% coverage and 10% reciprocal overlap

Insertions At least 50% of inserted sequence matching nearby insertions

R package: https://github.com/jmonlong/sveval

Results on HGSVC - Simulated reads

 $Non-repeat\ regions:\ regions\ not\ overlapping\ segmental\ duplications\ or\ simple\ repeats$

Results on HGSVC - Real reads

 $Non-repeat\ regions:\ regions\ not\ overlapping\ segmental\ duplications\ or\ simple\ repeats$

Simple repeat/low complexity regions are challenging

SV sequence annotated with RepeatMasker. Class assigned if covered $\geq 80\%$ by a repeat element.

Challenges with the VCF format

Multiple equivalent representations, over-simplification, impractical.

VCF v4.2 specs

Why not start directly from de novo assemblies?

Analysis of 12 yeast strains from 2 clades

Selected 5 strains to build graph: one reference + 2 per clade.

Evaluating SV genotyping using mapping statistics

No gold-standard to compare with.

Evaluating SV genotyping using mapping statistics

- No gold-standard to compare with.
- Map reads to a sample graph built from the SV calls:

◆ Mapping quality ~ Sample graph quality ~ SV calls quality.

Better mapping for SVs called in the cactus graph

Analysis restricted to reads at variation sites.

during graph construction

- excluded
- included

clade

- cerevisiae
- paradoxus

Conclusions

- ◆ The vg toolkit can integrate and genotype SVs.
- ◆ Graphs from *de novo* assemblies alignment performs better.

Hickey et al. bioRxiv 2019

https://jmonlong.github.io/manu-vgsv/

Conclusions

- ◆ The vg toolkit can integrate and genotype SVs.
- Graphs from de novo assemblies alignment performs better.

Hickey et al. bioRxiv 2019

https://jmonlong.github.io/manu-vgsv/

Future directions

- Experiment with high-quality human de novo assemblies (e.g. the Human PanGenome Project).
- Combine public SV catalogs and **genotype** SVs in a large and diverse cohort.

Acknowledgment

Benedict Paten Glenn Hickey David Heller Adam Novak Erik Garrison Jouni Siren Jordan Eizenga Charles Markello Xian Chang Robin Rounthwaite Jonas Sibbesen Eric T. Dawson

Acknowledgment 1

Universal genome graph

Just untangle this graph appropriately, and you'll have your genome project done. #BioinformaticsMadeSimple

2:09 PM - 16 Sep 2018

Some methods "over-genotype" similar variants

Deletion correctly genotyped by vg

51 bp homozygous deletion in the 3' UTR of the LONRF2 gene.

Simulation experiment

SV catalog summary results

Precision-recall curve

Evaluation per SV size

Better mapping for SVs called in the cactus graph

Analysis restricted to reads at variation sites.

during graph construction

- excluded
- included

clade

- cerevisiae
- paradoxus