Population-based Detection of Structural Variants in Normal and Aberrant Genomes.

Jean Monlong

Guillaume Bourque's group

Canadian Human and Statistical Genetics Meeting April 19, 2015

Human Genetics Dept.

Structural variation

Genetic variation involving more than 500bp.

Raphael Lab, Brown University.

Structural Variant: SV; Copy Number Variation: CNV.

SV detection using High-Throughput Sequencing

Baker 2012, Nature Methods.

Limitation

Mappability issues

- ▶ Noisy or reduced signal in repeat-rich regions, centromeres, telomeres.
- \blacktriangleright Unpredictable segmentation \rightarrow reduced sensitivity/specificity.
- Filtering problematic regions reduces the genome range tested.

Objective

Test the entire genome, including low-mappability regions, and detect subtle abnormal coverage.

PopSV: Population-based approach

Use a set of reference experiments to detect abnormal patterns.

PopSV: Population-based approach

Workflow

- 1. Genome is fragmented in bins.
- 2. Reads in each bin are counted, for each sample.
- 3. Normalization of the bin counts.
- 4. Each sample and each bin is tested for divergence from reference samples (Z-score).
- 5. P-value estimation and multiple test correction.

Application

CageKid : Renal Cell Carcinoma

- ► Whole-Genome Sequencing of 100 individuals.
- Normal and tumor paired samples.
- Reference samples : normal samples.

Twin family dataset

- ► Whole-Genome Sequencing of 45 individuals.
- ▶ 10 families (2 parents + 2 twins).
- Reference samples : all the samples.

 \sim 40X coverage, Illumina paired-end 100bp

Example : Partial signal supporting tumoral deletion

Chr.1, overlapping CDC14A gene (cell division cycle), not detected by other approaches.

Evaluating PopSV performance

Germline events detected in tumor samples

Results

PopSV detected more consistent calls than other methods with similar specificity.

Other validation and benchmark

- Consistent with SNP-array calls ?
- Twin dataset: concordant between twins ?
- Concordant calls when using different bin sizes ?

For more details/discussion come see **poster 30** tomorrow !

Twin dataset : PopSV on normal genomes

16-fold enrichment in low coverage regions.

Twin dataset : PopSV calls in low coverage regions

Father
Mother
NA
Twin1
Twin2

Father
Mother
NA
Twin1
Twin2

Conclusion

PopSV has been applied to

- ► Whole-Genome Sequencing of normal genomes.
- Whole-Genome Sequencing of tumor genomes.
- Whole-Exome Sequencing data.

PopSV robustly detects

- variants in high and low mappability regions
- variants with partial signal (e.g. in tumors).

R package available at github.com/jmonlong/PopSV.

Future direction

- Other types of SVs as excess of discordant read pairs.
- Combination with orthogonal approaches (PEM, Assembly).

Acknowledgment

Guillaume Bourque

- Mathieu Bourgey
- Louis Letourneau
- Francois Lefebvre
- Eric Audemard
- Toby Hocking

- Simon Gravel
- Mathieu Blanchette
- Simon Girard
- Guy Rouleau
- Michel Boivin

Thank You !

Low-mappability regions overlap functional elements

Unknown technical bias

PopSV: importance of normalization

- Experiment-specific technical bias.
- Naive normalization (linear, quantile) is often not enough.

sample

PopSV: importance of normalization

- ▶ PCA-based normalization (*Krumm*, 2012; *Boeva*, 2014).
- ► Targeted normalization: linear using a subset of the genome.

PopSV: Z-score and test

For a sample s:

For each bin *b*:
$$z = \frac{BC_s^b - BC_{reference}^b}{sd_{reference}^b}$$

▶ $pv = \mathbb{P}(|z| \le |Z|)$ with $Z \sim \mathcal{N}(0, \sigma)$ where σ is estimated from the z distribution across all bins.

Z-scores : Normal versus Tumor

"funky snowman" plot

Z-scores : contamination detection

Example: Telomeric region

Chr.10, overlapping genes (PRAP1, CALY), not detected by other approaches.

Example: NAHR candidate

500bp Z-scores within 10kb calls

500bp Z-scores within 10kb calls

SNP array methods concordance

SNP array concordance

SNP array concordance

Twin concordance

Twin concordance

Twins and clustering quality

Many variants in low coverage regions

Many variants in low coverage regions

Twins dataset : copy number estimation

Many calls in segmental duplications but also in genes

Distance to centromere/telomere/gaps

More SV detected near centromere/telomere/gaps.

Mappability

