Population-based Detection of Structural Variants in Normal and Aberrant Genomes.

Jean Monlong

Guillaume Bourque's group

Genome Informatics - September 21-24, 2014

Human Genetics Dept.

Structural variation

Genetic variation involving more than 500bp.

Baker 2012, Nature Methods. Raphael Lab, Brown University.

Structural Variant: SV; Copy Number Variation: CNV.

SV detection using High-Throughput Sequencing

Baker 2012, Nature Methods.

Limitation

Low mappability

- ▶ Noisy or reduced signal in repeat-rich regions, centromeres, telomeres.
- \blacktriangleright Unpredictable segmentation \rightarrow reduced sensitivity/specificity.
- Filtering problematic regions reduces the genome range tested.

Objective

Test the entire genome, including low-mappability regions, and detect subtle abnormal coverage.

PopSV: Population-based approach

Use a set of reference experiments to detect abnormal patterns.

PopSV: Population-based approach

Workflow

- 1. Genome is fragmented in bins.
- 2. Reads in each bin are counted, for each sample.
- 3. Normalization of the bin counts.
- 4. Each sample and each bin is tested for divergence from reference samples (Z-score).
- 5. P-value estimation and multiple test correction.

PopSV: importance of normalization

- Experiment-specific technical bias.
- Naive normalization (linear, quantile) is often not enough.

sample

PopSV: importance of normalization

- ▶ PCA-based normalization (*Krumm*, 2012; *Boeva*, 2014).
- ► Targeted normalization: linear using a subset of the genome.

PopSV: Z-score and test

For a sample s:

For each bin *b*:
$$z = \frac{BC_s^b - BC_{reference}^b}{sd_{reference}^b}$$

▶ $pv = \mathbb{P}(|z| \le |Z|)$ with $Z \sim \mathcal{N}(0, \sigma)$ where σ is estimated from the z distribution across all bins.

Application

CageKid : Renal Cell Cancer

Whole-Genome Sequencing of 100 individuals, \sim 40X coverage, Illumina paired-end 100bp, normal and tumor paired samples.

- Normal samples \rightarrow reference samples.
- 2kb bins.

Read-Depth measure - 2 strategies

- concordant reads: only properly paired and mapped read pairs.
- discordant reads: improperly mapped read pairs or low mapping quality.

Using concordant reads

"funky snowman" plot

Example: Telomeric region

Chr.10, overlapping genes (PRAP1, CALY), not detected by other approaches.

Example: Partial tumoral event

Chr.1, overlapping CDC14A gene (cell division cycle), not detected by other approaches.

Validation and benchmark

- Germline events detected in tumor samples ?
- Consistent with SNP-array calls ?
- Twin dataset: consistent with the pedigree ?

Germline events detected in tumor samples

PopSV detected more consistent calls than other methods with similar specificity.

Centromere/telomere/gap and systematic errors

PopSV using discordant reads

- Discordant reads support SVs.
- Goal: robust detection of an excess of discordant reads genome-wide.
- Challenging to estimate a background/expected model.

Usage

PopSV flags abnormal regions for further characterization using orthogonal approaches.

Discordant versus concordant reads

- Heterogeneous coverage \Rightarrow hybrid Poisson-Normal Z-score.
- Targeted normalization from PopSV on concordant reads.

PopSV and BreakDancer

BreakDancer: SV caller using paired-end mapping information (Chen, 2009).

Conclusion

PopSV: Robust and sensitive approach

- Superior to other Read-Depth methods.
- Wider range of the genome tested.
- Detection in low mappability regions and partial tumoral signal.

Work in progress

- More than an CNV caller.
 - Excess of discordant read pairs.
 - Combination with orthogonal approaches (PEM, Assembly).
- Custom binning: repeat annotation, Whole-Exome Sequencing.

Acknowledgment

- Guillaume Bourque
- Mathieu Bourgey
- Louis Letourneau
 Francois Lefebvre
 Eric Audemard
 Toby Hocking
 Simon Girard

Simon GravelMathieu Blanchette

Mehran Karimzadeh Reghbati

Canadian Institutes of Health Research Institutes de re en santé du C

GenomeQuébec

Thank You !

SNP-array concordance

Copy-number distribution

PCA vs Targeted normalization in tumor samples

PopSV and BreakDancer

BreakDancer: SV caller using paired-end mapping information (Chen, 2009).