Global patterns of copy number variation in humans from a population-based analysis.

ICHG Kyoto

Jean Monlong April 5, 2016

BOURQUE LAB MCGILL UNIVERSITY HUMAN GENETICS DEPT.

I have no financial relationships to disclose

Copy-Number Variation

Imbalanced genetic variation involving more than 500bp.

CNV detection from High-Throughput Sequencing

Baker 2012, Nature Methods.

Low-mappability regions

- Repeat-rich regions, centromeres, telomeres.
- \sim 13% of the human genome.

Low-mappability regions

- Repeat-rich regions, centromeres, telomeres.
- \sim 13% of the human genome.
- More prone to CNV.
 - Enriched in Segmental Duplications (Sharp Annual Review 2006).
 - Short Tandem Repeats highly polymorphic (Warbuton BMC Genomics 2008).
 - Transposons involved in CNV formation (Sen AJHG 2006).

Low-mappability regions

- Repeat-rich regions, centromeres, telomeres.
- \sim 13% of the human genome.
- More prone to CNV.
 - Enriched in Segmental Duplications (Sharp Annual Review 2006).
 - Short Tandem Repeats highly polymorphic (Warbuton BMC Genomics 2008).
 - Transposons involved in CNV formation (Sen AJHG 2006).
- Involved in phenotype and disease.
 - Short Tandem Repeats and gene expression (Gymrek Nat. Genetics 2016).
 - Repeats CNV involved in ~30 genetic disorders (Mirkin Nature 2007).
 - Retrotransposition in **cancer** (Lee *Science* 2012).

PopSV approach

PopSV approach

PopSV approach

Objective

Test the entire genome, including low-mappability regions, and detect subtle **abnormal coverage**.

PopSV: Population-based approach

Use a set of reference experiments to detect abnormal patterns.

Existing methods

FREEC LASSO-based segmentation; GC and mappability correction.

cn.MOPS Multi-sample Bayesian-based segmentation.

Whole-Genome Sequencing data

- 45 samples, including **10 twin families** (i.e 2 twins + 2 parents).
- 95 pairs of normal/tumor samples from Renal Cell Carcinoma (CageKid).

• **Replication** in the **twins**.

- Concordance with pedigree.
- Replication in the **paired tumor**.
- Concordance of **different bin sizes**
- PCR validation.
- **Overall** performance and in **different repeat context**.

• PopSV detects **3-5x more variants**.

- Wider genomic range.
- Robust across challenging regions:
 - Low-coverage.
 - Segmental duplications.
 - DNA satellites.
 - Short tandem repeats
 - ▶ GC-rich/poor.
- **Resolution** down to half the bin size.

CNV patterns in normal genomes

640 normal genomes

- 45 samples from the Twin study (\sim 40X)
- ◆ 95 normal samples from Renal Cell Carcinoma (~54X).
- ▶ 500 unrelated samples from GoNL (~14X).

640 normal genomes

- 45 samples from the Twin study (\sim 40X)
- ◆ 95 normal samples from Renal Cell Carcinoma (~54X).
- ▶ 500 unrelated samples from GoNL (~14X).

Where are CNVs located ?

In Centromere ? Telomere ? Segmental duplication ? DNA satellites ? Short tandem repeats ? Transposable Elements ? Exons ? Promoters ?

640 normal genomes

- 45 samples from the Twin study (\sim 40X)
- ◆ 95 normal samples from Renal Cell Carcinoma (~54X).
- ▶ 500 unrelated samples from GoNL (~14X).

Where are CNVs located ?

In Centromere ? Telomere ? Segmental duplication ? DNA satellites ? Short tandem repeats ? Transposable Elements ? Exons ? Promoters ?

Control regions

- Same size distribution.
- Randomly distributed.

Enriched close to Centromere/Telomere/Gap (CTG)

Enriched in SD and low-coverage regions

1. Control for the SD and CTG patterns.

2. Look at other repeat classes.

Control regions

- Randomly distributed.
- Same size distribution.

1. Control for the SD and CTG patterns.

2. Look at other repeat classes.

Control regions

- Randomly distributed.
- Same size distribution.
- Same proportion **overlapping a segmental duplication**.
- Similar **distance to CTG**.

- Satellites enrichment driven by ALR/Alpha, (GAATG)n/(CATTC)n families.
- Short Tandem Repeats
 - Enrichment distributed across families...
 - ... but stronger for larger STR.
- Transposable elements (TE):
 - **SVA** class enriched.
 - Expected: *L1HS*, *L1PA2* to *L1PA5*.
 - ► Surprises: *HERVH*, *LTR38*, *LTR4*.

Repeat CNVs and protein-coding genes

Set	CNVs	Genes with CNVs		
		Exon	+ Promoter	+ Intron
All CNVs	91733	7206	11341	13259
Low coverage	26888	682	1151	1977
Extremely low coverage	10010	347	465	521
STR	4286	45	286	748
Satellite	1822	2	21	33
TE	20491	164	1747	3998
STR/Satellite/TE	22313	166	1760	4014

Repeat CNV: more than 90% of the CNV is annotated as repeat.

Conclusion

PopSV

- uses reference samples.
- detects more CNVs.
- is robust across the entire genome.

- PopSV
 - uses reference samples.
 - detects more CNVs.
 - is robust across the entire genome.
- In normal genomes:
 - CNVs enriched in **low coverage regions**.
 - Specific enrichment in **satellites**, **simple repeats**, **TEs**.
 - Not due to segmental duplication enrichment.
 - Replicated across datasets but different from somatic patterns.
 - Some CNVs in low coverage regions or repeats hit exonic sequence.

Guillaume Bourque Mathieu Bourgey Louis Letourneau Francois Lefebvre Eric Audemard **Toby Hocking** Simon Girard

Patrick Cossette **Guy Rouleau Caroline** Meloche Simon Gravel Mathieu Blanchette

Workflow

Replication in twins

Robust across challenging regions

Robust across challenging regions

Using only CNVs in extremely low coverage regions !

Resolution - 500 bp bins Vs 5 Kbp bins

Control regions

QC - SD, low-coverage and CTG distance control

Control regions

Distance to CTG for somatic CNVs

